AD=A096 071 PITTSBURGH UNIV PA DEPT OF MATHEMATICS AND STATISTICS F76 12/1
A DECOMPOSITION FOR MULTISTATE MONOTONE SYSTEMS.(U)
JAN 81 H W BLOCKy T H SAVITS NODO!Q-"&-C-OBSQ
UNCLASSIFIED RR-81-02

Lo |
D?JFC'\

END
DaTe
FimeD
4-81




ADA09607 1

DOC FiLe cord

13

A DECOMPOSITION FOR
MULTISTATE MONOTONE SYSTEMS
BY
HENRY W. BLOCK AND THOMAS H. SAVITS H

Research Report # 81-02

Jamary 1981

Department of Mathematics and Statistics
o
University of Pittsburgh R
Pittsburgh, PA 15260 ‘ T

DISTRIBUTION STATEMINT A |

Approved far pulhe release;
Distrtba®on T alineined

81 3 3 o070 |



b man rte s s

|
|

A Decamposition for !
Multistate Monotone Systems

by

llenry W. Block! and Thomas H. Savits?

University of Pittsburgh

ABSTRACT

A deconposition theorem for multistate structure functions is proven,
This result is applied to obtain bounds for the system perfommance function.
Another application is made to interpret the multistate structures of Barlow
and Wu. Various concepts of mltistate importance and coherence are also
discussed.

AS Subject Classification: Primary 62N05, Secondary 60K10.

Key Words: Multistate structure function, bounds, system performance
function, coherence, relevance, importance, associated

conmponents.

Lesearch supported by ONR Contract NOOO14-76-C-0839.

ZResearch supported by ONR Contract NO0014-76-C-0839 and NSF Grant
MCS77-01458,




N AT o e SO

by s A e

-]-
§ 1. Introduction

Miltistate structure functions have been studied by Barlow and Wu
(1978), El-Neweihi, Proschan and Sethuraman (1978) (henceforth FPS) and
Griffith (1980). These structure functions have been developed in order
to deal with the situations where components and systems have more than
two states. Prior to these papers most research had concentrated on the
situation where the components and system could only take binary values
corresponding to '"failed" and "operating' states.

In this paper we obtain a decompositior'l for miltistate structure
functions. This is Theorem 2.8 (see also Theorem 2,11) of Section 2.
This result is applied to find system bounds in Section 3 and
to interpret the multistate structures of Barlow and Wi in Section 6.

(oncepts of multistate importance and coherence are discussed in Sec-

tions 4 and 5. .
Extensions to the contimious case for the decomposition have heen »

completed and will appear elsewhere. l

§ R, Multistate structure functions and decorposition results.

Let S="{0,1,...,M} and ®: S™ + S be a nondecreasing function.
The values taken by & will represent the system performance and, for 1
ench 1, x, will denote the performance of the 1™ component. We dis-
tinpuish M+l performance levels ranging from perfect functioning
(1cvel M) to complete failure (level 0). The assumption that ¢ is non-

drcreasing corresponds to the notion that improvement of a component

4n
cannot lead to a worsening of the system. / ,..\‘CC?_,L‘; .
- / IvJ\ e Tl
RB~fore we state any of our results we should first note that the / ERREA R "o
VA

eboe et up is really the most general in the finite state case. For (,/‘ R

7

suppose that we can distinguish among Mi+1 performance levels for com- 1
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ponent i, which we designate by S; = {0,1,...,M}, and that we can dis-

tinguish among N+1 performance levels for the system ¢, which we desig-

nate by E=1{0,1,...,N}. Thus ¢: SIx...xSn+E. Now let M = max{.\il,...,

Mn,N} and set S=1{0,1,...,M}. We define a new system function
'(k' s™s by af(x cvesX ) = 3’(x Al x AM ), Clearly ¥ is nondecreasineg
. 1. ’ n 1 11, e ey n -n . v v 5 < S

if ¢ is. Later on we also impose the condition that $(2,...,M) = M.
Since this may not be the case above, we simply redefine & to be M on
the set where it had the value N. Of course, 'if one prefers to work dir-
ectly with the given ¢ instead of %, all of our results can he appropriately
modified to handle this case.

We now give sane elementary conditions and implications concerning
the monotonicity of ¢, The first two parts of the followipm rrsult are

consequences of results in Griffith (1980).

1. ¢ is nondecreasing if and only if either of the followinr con-
ditions hold:
(1) ¢(xv:) > &(x)v¥(y) for all x, y ¢ 5",
(13} ¥(xay) < ®(x) Ad(y) for all x, ye s"
2. If ¢ is nondecreasing, then for all x = (x ,...,x ) € S

(1) min X, < ¢(x) if and only if (k) > k for all k ¢ §,
i Z

(11) o(x) < max x
i

" if and only if &(k) < k for all k € S,

Consequently, min Xy < ®(x) < max Xy if and only if &(k) = k for
i i

all k e S.
3. If ¢ is nondecreasing, then

(1) max ¢(x1,0)§_¢(§)< max &(x; M),
i - T i o

MMl iy
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(11) ¢(min xi) < &(x) < P(max xi).
i i

Furthermore, these bounds are not campatible in the sense that there
exist systems ¢ for which (1) is a better bound than (ii) and vice-versa.

4. (1) &xvy) = &x)Vv&(y) for all x, y € S if and only if

| i ®(x) = max h;(x) where h, (i) = ®(j; 0).
] i
|

(11) ®(xmy) = &(x) A &(y) for all x, y € S" if and only if

¥(x) = min Hi(xi) where Hi(‘j) = @(ji,ﬂ).

)
Here we use the notation O(xi,z) = &(y;,..- AR IR A .yn) and
k= (k,...,k).

For the next results besides assuming ¢ is nondecreasing, we impose the
condition that ¢(0) = O and ¢(}M) = M. This merely states that if all com-
ponents fail, the system fails and if all components are functioning per-
fectly, the system functions perfectly:.v We do not make the assumption

b

imposed by EPS and Griffith that &(k) = k for k = 1,...,%-1. e will

call such a function ¢ a multistate monotone structure function (MMS).

(2.2) Definition. A vector x called an upper (lower) vector for level k

of an MMS if &(x) > k(®(x) < k). It is called a critical upper (lower)
vector for level k if in addition y <x and y#x implies ¢(y) <k (if y > x
and y ¥ x implies &(y) > k).

The set of all critical upper (lower) vectors for level k is denoted
by Uk or Uk(¢) if necessary (Lk or I.k(é)). If xe Uk’ k=1,2,...,, let
Up(x) = U (9;x) ={(i,x,) : x; # O}
iftxe lk' k=0,1,...,M1, let
L (%) = L,(®;x) ={ (1,%x): x, # M.
As we will see, these sets play the role of min path sets and min cut sets

regpectively.
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As usual the concept of duality changes upper vector concepts to lower
vector concepts. More precisely, if ¢ is an MMS, then 67(x) = M-0(}-x) is
also an MMS called the dual of ¢. The proofs of the following two results
are obvious.
(2.3) Theorem. The vector x is an upper vector for level k of ¢ if and
only 1f ¥x is a lower vector for level M-k of ¢”. Turthermore, x e T, (¢)
if and only if M-x € L, (¢").
(2.4) Theorem. For k > 0, #(x) > k 1f and only if x > X for some x_ ¢ 1.
(2.5) Remark. The assumption ®(M) = M implies U, # ¢ for k = 1,...,! and
Uy # ¢ implies o)) = M.

Now we define the binary function ¢k of M+n hinary variahles
y= (yiJ: l<i<n, 1< J< M by
(2.6) ¢k(-¥) = max min ym, k=1,...,""

xe:Uk (i,j)e‘!k(_:;)

Although this function is defined for &1l Men values of y, wo are only
interested in this function on the domain given by the image of the fol-

Men

lowing function. We define a: 8" +{0,1} ™ by a(x) = (a, . (x): 1 < i< n,

1]

1< J< M), where x € s" and a (x) =1 1if x, > j and O otherwise,

i i

(2.7) Leima. Yor k > 0, ®(x) > k if and only if tbk(a(i)) =1.
(2.8) Theorem. &(x) = [M &y (a(x)).
k=1
Since the proofs are straightforward, we omit them. Theorem (2.8) is
a type of decomposition result analopous to those using min path sets in the
binary case.
(2.9) Pemarks. (i) Yote that ¢1 (a(x)) > ¢2(a(3<_)) >. ..z_th(a(z(_)); oquiva-

lently, é; > é; >...> 4, 0n A= a(s™ = {y=(yy): Ty =1, then g = 1

for all £ =1,...,j}.
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{i1) The min path sets of the binary ¢k in the sense of Barlow and Proschan

(1975) are precisely the sets {U(x): x € 1], }.

(1i11) Although the ¢, are binary structure functions, other concepts
discussed in Barlow and Proschan such as min path vectors, min cut vec-
tors, etc. don't correspond exactly to the concepts discussed here; how-
ever, if these binary concepts are modified for ¢k restricted to A, then
there is a correspondence between the two notions.
(iv) If 3’1,... ,3'“ are binary monotone structure functions of the binary
varisbles (y;q: 1< < n, 1< J< M) satisfying (i), then 6(x) =

M

kzl 3, (a(x)) is a miltistate structure function; furthemore, if ¢,...,4
are the binary monotone structure functions in the decomposition Theorem
2.8 of ¢ then ¢ = th on Aforallk=1,...M
(2.10) Example. An example will serve to illustrate the procedure. Iat
o {0,1_,2}2 +{0,1,2} with 0 = $(0,0) ‘* #(1,0), 1 = ¢(0,1) = &(0,2) =
®(1,2) = #(1,1), 2 = &(2,0) = &(2,1) = $(2,2). Then

U, ={(2,0), (0,1)}, U, ={(2,0)}

and
Ul(zio) = { (132)} = 112(2,0),
u,(0,1) =" {(2,1))}.
Then
¢,(y) = max min V.. =Y
X xeU,  (1L,)euyx 12
and

¢, (y) = max min V.. = max (Yo .y.o)
s xet; (1,3)eU;(x) 14 21712




+

x a(x) ¢, (a(x)) | do(a(x)) | &(x) =k§1¢k(a(>_<))
(0,0)| (0,0,0,0) 0 0 0
(0,1)| (0,0,1,0) 1 0 1
(0,2){ (0,0,1,1) 1 0 1
(1,0)| (1,0,0,0) 0 0 0
(1,1)| (1,0,1,0) 1 0 1
(1,2)| (1,0,1,1) 1 0 1
(2,0)| (1,1,0,0) 1 1 2
(2,1} (1,1,1,0) 1 1 2
2,2)! (1,1,1,1) 1 1 2

A similar decomposition can be obtained using critical lower vec-

tors. More precisely, define the binary structure function wk of the
' .t

t
Men binary variables z = (z,, : 1< i< n, 0< j< M1) by

13

¥ (2) = min max

zij
xely  (1,3)ely (%)

for k = 0,1,..., 1. As in the previous case we restrict the domain of

(z) tothenmgeofszsn-v'{o,l}wn where f(x) = (B, (x) : 1< i< n,
h = (8400 111

0< jJ< W1) and B, ,(x) = O if xif_:j and 1 otherwise.

i
! M-1
(2.11) Theorem. &(x) -kzo W (B(x)).

Proof. The proof is most easily obtained by duality arguments.
(2.12) Ramark. It should be noted that ¢k(a(5)) = wk_l(B(gt_)) and

Oy4(X) = By 4 )(X) for all k=1,...,M, i=1,...,n, J=1,...,Mand x ¢ s".
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We will make use of this observation in Section 3.
We now consider the stochastic bhehavior. let Xi(t) bhe a right-con~

timwous nonincreasing stochastic process with values in S; i.e., ¥ i(t)
represents the statistical behavior of component i. Set X (t) = (Xl(t),.. o

Xn(t)). We define

Tyy = if f > 0 : X;(t) < J}

T, = inf & > 0 : &(X(L)) < Kk}

fori=1,...,nand j, k=0,1,..., M1,
(2.13) Theorem. For k = 0,1,..., M-1,

T, = max min T

k i ’ J -1
XUy (1,3l (X)

= min max. Tij
xely  (1,3)ely (x)
Proof. First we observe that ¢(X(t)) < k if and only if ) 4 (2(X(t))) = 0.

Consequently, T, = 7' where T"! = inf {t > 0 : ¢, (a(¥(t))) = O}. Put

from the results in the binary case,

Tkﬂ = max min

Tij ,

el (1,)el (0

where T, = inf & > 0 : o, (X(t)) = O}. Since *
Tij =infft >0 : aUQ(_(t)) =0} = infft >0 : X; (1) <j}

=inff >0: Xi(t)iJ-l}'Ti j-1°

we are done. The second half follows similarly.




§ 3. Bounds
EPS (1978) have obtained bounds on the system performance function

E[¥(X)] where X -(Xl,. .o ,Xn) is the state vector which is assumed to have

independent components and ¢ is an MMS which satisfies ¢(k)=k for all keS.

The bounds given are

M n_ M n
I mB (1)< Elex)l< ] {1-1 P(5-1))
J=1 i=1 - j=1 i=1 i

where P,(J) = P(X,<}) and B,(3) = 1-P,(J). It should be observed that

this result still holds if the components are assumed to be associated.
In this section we use the decamposition (2.8) and (2.11) along with
the remark (2.12) to obtain bounds based on the upper and lower critical
vectors. Let P(J) = P(&(x) < J) and P(j) = 1-P(j).
(3.1) Leama. Let ¢ be an S and k=0,1,...,M-1.
(a) The following bounds amays.;_ihom:

max pm{x1>;;-1}) & P(k) < min  P(UH{ X;>3))
YU (LD (D) yely  (1,3)ely ()

{b) If the X, are associated, then

i
max Il B (3-1) < B(k) < min i P
YUy (1,3)eU (V) yely  (1,3) eI, (y)

T Pux>IH < B k)< jy PONIX>3-1D
yely  (1,3)el (¥) YeUyy (1,3)el ()

(c) If the x1 are independent, then

noa B - POy < M T Pa-1))
yely (4,)ely (y) ye g (10e (1)




! Proof. (a) This is easy.
(b) The first set of bonds is a consequence of (a) and association.

The second set follows since the collections

: " {max BU(_)_(_), !th} and \min aij(_}_(_) , y‘wkﬂl
(1,3)eL, (y) (1,3)e0) 4, (¥) B

are each collections of associated random variahles.

Vi (c) This follows fram the second set of inequalities in (b). ]

n (3.2) Note. The bounds in b) are also valid under the wc iker assumptions P

that the components satisfy an appropriate type of orthant dependence as
discussed by Ahmed et al (1978).

(3.3) Theorem. Under the assumption that the components of the WS ¢ are

independent,
| M _
? j maxfmax T B (3-1) , W SRR NG)! }g F(8(X))
| k=1 ' aver
' ey, (1,3)e0, () Xd‘lg*—l G, 3y ()

| M
E <. ! min{min U Py 4o P, (3-1)]
k=1 (

y_eLk_l (i,;l)eLk_l(y) yeUk (i, j)er'k(_v_) L.

Al

Pronf. Ve need only usc thn fant that

M
E(¥(X)) = ) Pae-1) ol anply the Temma.
2 1

(3.4) Note. TUlsinm the notation of Thenrem 1,13 and recognizing that

PLX(E)N5 =P 'T‘_H.\.*.}, if the 'F‘H ara JF o TTIA the results of Chapter

4, S~ction G of Barlow and Proechan (1075) enn 1~ anplied to obtain bounds

~m Py THN‘.} anl £0 on F(H(£)) hy th abnve throrem,
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§ 4. Some remarks about ccherence assumptions.

As was remarked earlier, EPS (1978) and Griffith (1980) also studied
the deterministic properties of multistate monotone structure functions 1
in the finite state case. Besides the basic monotonicity assumption, how-
ever, they assumed that ¢(k) = k for all k € S plus a type of coherence
assumption. In Griffith (1980) three distinct coherence conditions arn
delineated which we list below. i

(SC): ¢ is said to be strongly coherent if for any component i and any

level j, there exists x such that <b(ji , X) = j while t.b(zi y X) %]

for L # jJ.
(C): ¢ is said to be coherent if for any component i and any level

J > 1, there exists x such that d>((;i-1)i y X) < d’(ji , X).

(WC): ¢ is said to be weakly coherent if for any component. i, there exists

x such that ®(0; , x) < &M, , x).

EPS (1978) assumed condition (SC) fori'ltheir class whereas Griffith (19080)
showed that all of the results of (1978) hold under the assumption of

(C), but same are false under (WC). Loosely speaking, condition (S7) says
that every level of every component is relevant to the sam Jevel of the
system ¢; condition (C) says that every level of everv comonent is rele-
vant to the system ¢; condition (WC) says that every commonent is relevant

to the system ¢.

In tetms of the decomposition (2.8), we can paraphrase the above as ,

follows. The system ¢ is coherent if and only if for every i and j, ¥ij

is relevant to some ¢k; ¢ is weakly coherent if and only if there exists

J such that y . is relevant to some ¢, . The condition of strong coherence
i)

and the conditions &(k) > k, ®(k) < k for k € S can he similarly rephrased,
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but since they are somewhat more complicated to state, and lose their
intuitive content, we will not state them here.
Part 4) of Proposition 2.1 has a stronger form. In FEPS (1978),

under the assumption of (SC), it was concluded that hi(j) = j and
Hi(J) = jforalli=1,...,n, j=0,...,M. Griffith (1980) concluded

the same result assuming the weaker condition (C). Griffith also showed
that the result was false under (WC).
§ 5. Multistate importance and coherence. ,

Besides introducing the three coherence assumptions mentioned in
the preceding section, Griffith (1980) has introduced a concept of multi-
state importance. Previously Barlow and Wu (1978) had discussed a
measure of multistate importance. In this section we discuss a simple
connection between relevance, coherence and importance and consemqently
relate the various concepts of these: ,‘-anthors. This also leads to new
concepts of importance. The simple ;rinciple follows.

(5.1) Importance Principle. A component i is relevant at a state j if

there exists a state vector x such that a certain condition involving

i,j and the structure function holds. A system is coherent if a relevance
condition holds for all components and certain states. The importance

of a component 1 at a state j is a measure nf the mumber of state vectors
X for which the relevance condition holds.

(5.2) Example. Oonsider a binary nondecreasing structure function ¢(x).

Then 1 is relevant if there is an x such that ¢(0,,x) < ®(1,,x). The

system is coherent if the condition holds for every comonent i. Two'

measures of importance are

Iq,(i)-;—n_-1 Card {(1;,%) | ®(0;,%) <&(1,,x))

Y
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which is called the structural importance and

I1) = PL&(0,, %) < &1, X)}

which is called the Birnbaum importance.
Now the connection L=tween the various types of multistate condi-

tions should be clear. The importance measure of Barlow and ™t is

SC

Iy

'

where ¢ is the particular miltistate structure function of those authors.

HNowever the condition inside the probability statement is the basic form
of the coherence condition of EPS, i.e, these authors say the system is
coherent if the condition holds for everv component i and cvery state j.
This is also the condition which Griffith called strongly coherent, (2C).
In a similar way we may extend the other two coherence concepts of
X

Griffith to importance concepts. Cox{cepts (C) and (WC) of Seection 4

become

1,5%1) = B LA, B < 21,0}

3
and
1"ty = B 00,3 < 001, 1))

Taking P { Xi-:j} - %ﬁ'l we ohtain two structural concepts of importance.

These can now be compared with the concept of miltistate importance de-

fined by Griffith. For utilities a, = £ for 2=1,...", the concept of

L
Griffith becomes

M
I,4) = r£1 P{o((3-1); X) < 2 < 01,0}

= E[6(3,, )] - EL8((3-1), , X) .

!
|
i
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Ancther importance measure that this supgpests is

LMty = pLo(-1,0 < 03,0 = )

All ut one of the above can be interpreted as the importance of compon-
ent i at state j (Iwc(i) can be interpreted as the importance of compon- .
ent 1). Griffith considers also the importance of a component i as the |
vector

I(1) = (1y(1), Iy(1),... L (N,

However it is also possible to consider the importance of the component i

M
as some mmerical measure of the Ij(i), e.g. |} IJ(i). The value of
J:

Griffith's concept however is that it preserves a property hasic to the

binary case, i.e., from Proposition 4.1 of Griffith (1980) i

E(¢(X)) = E(¢(01,_7_(_)) + 1(_1) - (P (Xi_>_1))P(X53_2),. . .P(:ig}?)) .
v
This gives that if caomponent i is stochastically irproved, i.e.,P(Yi_>_j) <
P*(X_iz;l) for j=1,...,M, then the improvement in the system is

I(1) = (P* (X21) - P (X21),...,P* (X;2') - P (X;>'))

Some relations which hold between the various importance relations intro-

duced are

C

; We 1w

IJSC(1)<_ 1. My< 1

J

c
I (e L@,

§ 6. Application of the decomposition result.

We now apply the results of Section 2 to the multistate system of




Barlow and Wu (1978). According to their definition, g is a mltistate
structure function if we can write

(6.1) ¢(z) = max min z; = min max 24

l<r<p 1ePr l<s<k ieKS ?
where Pl... . ,Pp are the min path sets and Kl’ oo ,Kk are the min cut sets
of same binary coherent system ¢ and z = (zl,. . .zn) is the camonent state

vector with 0< z, < M for i=l,...,n.
It is clear that

U ="{kx | x i8 a min path vector of ¢}

k

L = {(MK)y+k | ¥ is a min cut vector of ¢} .
For z € U, where z=kx, it follows that

U(2) = {(i,k) | 1 € C(x)}
where Cl(g_t) is the min path set of ¢ (gn the sense of Rarlow and Proschan
(1975)) corresponding to x; i.e., one of the Pryees ,Pp. Similarly, for
z € L, where z = (M-k)y+k,

L(z) = {(1,k) : 1eC_(y)}

where C o(x) is the min cut set of ¢ corresponding to y; i.e., one of the

Ky peos Ko

(6.2) Remark. Notice that the condition in Theorem 2.4 becomes: for

k>0, %(2) >k if and only if there is a min path vector _750 of the associ-
ated binary coherent system ¢ such that z > loio.

The following equivalent conditions can now be stated. Iere ck

is the binary function related to { by (2.6).
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(6.3) Lemma. The following conditions are equivalent. Iet k > o.
(1) ©2) >k
1) g laz) =1
(111) (e (2)) =1

where o (2) = (o), (2),...,0,,(2)) and a;,(z) is defined in Section 2.
Proof. We've already proven the equivalence of (i) and (ii). Now sup-
pose that ;k(a(g)) = 1. Then there is a min path vector x of ¢ such

t:hza.tgﬂk;v:_andmi‘:|

ie Cl(g_:_). Hence a.k(g) is a path vector for ¢ and so ¢(ak(_2_:_)) =1, On the

(z) = 1 for all (i,j) € Ulg(k’—‘); i.e., a;,(z) =1 for all

other hand, if ¢(ak(_§)) = 1, then a.k(g_) is a path vector for ¢. Consequently

there is a min path vector 50 of ¢ such that a (2) > §°. Thus z; > k for

all 1 € Cl(_J_t_o), which implies that z > k:io € Up. Hence g(z) > k be Remark
6.2.

We now have the alternate way of e?tpressing the decomposition Theorem
2.8 for this class of mltistate structure functions. It follows im-
mediately from the Lemma.

(6.4) Theorem. &(z) = [:_1 ¢(ay (2))

Among the class of all monotone structure functions, we can now
describe those of type (6.1). A similar result exists if min cut sets
instead of min path sets are used.

(6.5) Theorem. Jet ¢ be an MMS. Then the following are equivalent.
(1) ¢ is of the fom (6.1).
(i1) For k =1,2,...,M, Uk = k"l’

Proof. It follows from the remarks below (6.1) that (i) implies (ii),

so we need only show that (i1) implies (i). Thus let ¢ he an MS
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satisfying (ii). Suppose that z ¢ U;. Then U,(2) = (i,zi) :

z; ¢ O0}. Hence if z; # 0, it mist be that z, = 1 for otherwise Mz ¢ U, .

Let P(z) = {1 : z, = 1} be its "path set". From this it is easy to

conclude that

¢1(z)-max min
l<r<p ieP,

11

10 .Pp are the path sets corresponding to each
' |

1’ we get then that

wherep=cardU1am1P

of the path vectors in Ul' Since Uk = KU

ok(y_)-max min ik
1<reap iePr

for k=1,... ,M. Thus if we define the binary structure function ¢ of

the binary vector x = (xl,... ,xn) by ¢(x) = max min X, we have
N l1<r<p iePr

$e(2(2)) = ¢(e (2)).

M M
Since &(z) = ] ¢ (a(z)) = ] ¢(o(2)), it readily follows that
=1 =1

o(z) = max min =z
l<r<p iePr

i3

i.e., ¢ is the fom (6.1),
(6.6) Remark. Borges and Rodrigues (1980) have also obtained a charac- ]
terization of the Barlow and Wu multistate system.which is different

than the one here.
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